CURRENT AND PAST RESEARCH PROJECTS

Deciphering Plant Microbiomes

 

MICROBIAL ADAPTATIONS TO DROUGHT (WAGNER LAB)

This exciting new project will investigate effects of drought on the evolution and ecology of soil and plant associated microbial communities. More information coming soon.

MICROBIOTA AND HOST PHENOLOGY (ROPER LAB)

Plant phenology, the timing of annual plant life-cycle events, affects the fitness of the plant and the organisms that are dependent on it. In the context of agriculture, it can affect the potential yield, growing distribution range, and a crops adaptability to climate change. Changes in phenology can be detrimental to pollinator populations, plant yield, pest treatment efficacy, and concerning human health, may lead to premature or prolonged allergy seasons. Recent work has shown that phenology is impacted by environmental factors. However, the impact of biological, particularly microbial, factors on the regulation, timing, and plasticity of plant phenology is still unknown.

I am working to characterize plant microbial ecological patterns associated with host phenology, which is the first step in unraveling the microbiomes potential role in co-regulating host phenological events.

INTER-MICROBIOME INTERACTIONS (ROPER LAB)

This project is focused on observing how symbiotic bacteria influence the colonization of other native bacteria with in the plant. Physical niche partitioning may influence functional roles of the community members.

I am studying where and why microbes preferentially colonize specific plant compartments. Preliminary results show that some microbiome members regulate colonization of other microbiome members and that physical niche selections maybe driven more by competition rather than physical and biochemical differences between host compartments.

THE MICROBIOME AND PLANT DISEASES (ROPER LAB)

The microbiome has the potential to interact with pathogens directly by promoting, impeding, or blocking colonization of the host, or indirectly by provoking a plant response, aiding in host nutrient acquisition, increasing plant growth capabilities, or transforming into secondary or opportunistic pathogens. Microbes may play dual and temporal roles within a pathosystem. These beneficial or injurious interaction with the host and/or pathogen very likely plays essential roles in disease development and plant protection.

I am using amplicon based sequencing to better understand the disease microbial ecology of Huanglongbing (HLB) disease in citrus trees. Additionally, I am providing evidence that a complex of bacteria, fungi, and oomycetes affect HLB development and rate of disease progression.

  • LinkedIn

©2018 by Nichole Ginnan. Proudly created with Wix.com